271. The Structure of the α -Modification of 1:4-Dithian 1:4-Dioxide.

By H. M. M. SHEARER.

The crystal structure of this dioxide has been determined by X-ray methods. The monoclinic unit cell, $a = 6.34 \pm 0.01$, $b = 6.46 \pm 0.01$, $c = 8.22 \pm 0.01$ Å, $\beta = 103^{\circ} 57' \pm 15'$, space-group $P2_1/n$, contains two centrosymmetrical molecules. Analysis of the three principal zones leads to a model in which the dithian ring has the chair form with the oxygen atoms in the *trans*-diaxial positions. No unusual bond distances or intermolecular contacts are found.

BELL and BENNETT¹ reported that oxidation of 1:4-dithian gave two dioxides or disulphoxides. That produced in greater yield, designated α , was described as being more soluble in water and less soluble in ethanol than the other (β). The authors suggested that it was the *trans*-compound. The present work confirms this and shows that the molecules, in crystals of the α -form, have the *trans*-diaxial configuration with the ring in the chair conformation, as in the parent compound 1:4-dithian ^{2,3} itself.

Crystal Data.—Monoclinic; $a = 6.34 \pm 0.01$, $b = 6.46 \pm 0.01$, $c = 8.22 \pm 0.01$ Å, $\beta = 103^{\circ} 57' \pm 15'$. U = 326.7 Å³, $D_{\rm m} = 1.535$ g. cm.⁻³, Z = 2, $D_{\rm o} = 1.547$ g. cm.⁻³, μ ($\lambda = 0.7107$ Å) = 7.37 cm.⁻¹. Space-group $C_{2h}^{5} - P2_{1}/n$ from systematic absences. Molecular symmetry, centre.

EXPERIMENTAL

Crystals were obtained as thin plates, with the $\{10\overline{1}\}$ and $\{101\}$ faces well developed, by evaporation from a solution in ethanol. The unit-cell dimensions were measured from precession photographs and the axial ratios (0.981:1:1.272) were found to be in good agreement with those given by Bell and Bennett ¹ (0.979:1:1.267; $\beta = 104^{\circ} 3'$).

For intensity measurements a crystal of cross-section 0.20×0.23 mm. and length 0.80 mm. was used, mounted about the *b* axis. The (*h0l*) reflections were recorded on an integrating Weissenberg apparatus, and the (*hk0*) and (*0kl*) reflections on the precession camera; Zrfiltered Mo radiation was used throughout. The intensities were estimated visually, an exposure scale being used, and corrected for the usual angle factors. No corrections were applied for absorption.

Structure Determination.—The space-group is $P2_1/n$ with two molecules in the unit cell, so that the molecule possesses a centre of symmetry. It must therefore have the chair configuration with the oxygen atoms in diaxial or diequatorial positions.

The (010) projection was examined first since this was the simplest. The sharpened Patterson function was evaluated, by using as coefficients $F^2 / \sum fi^2$. The Patterson map showed two large peaks of almost equal height. One was sharper and rounder than the other with an

¹ Bell and Bennett, J., 1927, 1798.

² Duthie, Acta Cryst., 1953, 6, 804.

³ Marsh, *ibid.*, 1955, **8**, 91.

environment similar to that at the origin and so was taken as the S-S vector across the centre of symmetry. A single superposition, with the origin of the Patterson function transferred to this point, gave approximate positions for the carbon and oxygen atoms in this projection and showed the oxygen atoms to be diaxial.

1395

Refinement was carried out by means of one F_0 and two F_0 - F_c syntheses, and the contributions of the hydrogen atoms (the positions of which were estimated approximately from a model) were included in the final stage. The arrangement of the atoms in this projection is shown in Fig. 1.

For the (001) projection, the determination of the approximate structure and its refinement were carried out in a similar manner. In the (100) projection, considerable overlapping of the atoms occurs and only a final structure factor calculation was made as a check of the correctness of the structure.

The structure factors were calculated by using the form factor due to Viervoll and Ogrim ⁴ for the sulphur atoms, those of Hoerni and Ibers ⁵ for the carbon and oxygen atoms, and that of McWeeny ⁶ for hydrogen. On the basis of the difference maps, individual temperature factors were assigned to the different atomic species and the final values of the exponent B (in Å²) in the expression exp $(-B \sin^2\theta/\lambda^2)$ are shown below.

The value of B = 3.5 Å² for the hydrogen atoms was adopted, somewhat arbitrarily, for all the structure factors. The reliability indices were 9.8% for the (*hol*) reflections, 9.0% for the (*hk*0), and 9.1% for the (*okl*). The structure factors are listed in Table 3.

- ⁴ Viervoll and Ogrim, Acta Cryst., 1949, 2, 277.
- ⁵ Hoerni and Ibers, *ibid.*, 1954, 7, 744.
- ⁶ McWeeny, *ibid.*, 1951, **4**, 513.

 \bigcirc

The final atomic co-ordinates are given in Table 1 and the bond lengths and angles in Table 2 with their averaged values in Fig. 2. Estimates of the standard deviations in bond lengths and angles were calculated ⁷ and are included in Table 3.

	97-9° (S)	() () () () () () () () () () () () () (/:5/ 2:3°	-C ¹⁸¹	5	1	Fig. 2 . <i>At</i>	veraged	molecrii	lar dimer	nsions (in A).
$S \\ O \\ C_1 \\ C_2$		x/a 0·2 0·3 0·0 0·1	2 07 50 58 33 -	1 ABL y/b 0.181 0.095 0.219 -0.025	E I. A: z/c 0.016 0.170 0.061 -0.134	tomic co H _i H _i H _i H _i	-ordinates	x 0. 0. 0.	/a 141 070 281 027	y/b 0·224 0·340 0·065 0·031	0 0 0	z/c •050 •163 •190 •237
S0 SC ₁	1.48 ± 0.0 1.82 ± 0.0	014 S 018 (T S-C ₂ C ₁ -C ₂ '	ABLE 2. 1.80 ± 0 1.51 ± 0	Bond 1 0.018 0 0.025 0	lengths (C ₁ -S-O C ₂ -S-O C ₁ -S-C ₂	(Å) and an 106·4° ± (108·3° ± (97·9° ± (ngles.)•8°)•8°)•8°	C ₂ '-C ₁ - C ₁ '-C ₂ -	-S 111 -S 113	$rac{1}{3^{\circ}\pm1}$.∙25° .∙25°
hk 2000 6000 8000 0200 0400 0600 0800 002 004 000 0002 004 0003 002 0040 006 0080 1005 1007 1005 1007 1009 1,0,111 2005 2002 202 2002 202 2004 204 2005 2,0,10 309	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	hk 307 303 301 303 301 303 301 303 301 303 303 305 307 408 404 402 404 402 404 400 50,0,11 503 505 503 505 505 505 505 505 505 505 505 505 505 505 505 505 505 505 505 505 505 507 608 602 604	$\begin{array}{c} F_{0} & -1 \\ F_{1} + 2 \\ 138 \cdot 3 \\ 212 \cdot 9 \\ 111 \cdot 4 \\ 23 \cdot 9 \\ 112 \cdot 3 \\ 212 \cdot 9 \\ 111 \cdot 3 \\ 111 \cdot 1 \\ 111 \cdot 1 \\ 112 \cdot 1 \\ 112 \cdot 1 \\ 111 \cdot$	I AB 7.3 606 8.8 608 2.6 608 2.6 703 8.5 701 3.4 703 3.3 702 3.4 703 3.3 705 2.2 808 1.3 806 2.9 804 6.6 802 3.3 10,0,4 5.3 110 8.2 120 4.4 140 8.2 120 4.3 140 8.6 150 1.0 160 8.8 170 3.6 120 4.3 210 5.5 220 4.3 140 8.6 150 2.3 270 4.1 280 6.8 0.6 3.10 6.8	LE 3. Fo F $\sqrt{2?7}$ +0 3.6 -2 9.9 -10 3.9 -8 10.0 -10 5.3 -5 4.3 -3 2.8 -3 2.6 -3 9.7 -9 $\sqrt{2?7}$ -1 2.9 -2 4.6 +4 8.4 +9 40.6 -39 3.4 -33 3.1 -2 2.9 -2 4.6 +4 8.4 +9 40.6 +39 3.4 -33 3.1 -2 1.2 -9 1.2 -9 1.2 -9 1.2 -9 1.2 -1 2.8 -3 2.6 -3 9.7 -9 $\sqrt{2.7}$ -1 2.9 -2 1.7 -0 4.5 +6 8.5 +9 7.8 +70 10.7 -10 4.5 +15 7.8 +70 10.7 -10 4.7 +5 2.9 -3	Structur o hkl s:8 320 s:3 330 -7 360 -7 360 -7 360 -7 360 -4 410 -8 430 -8 430 -8 430 -3 460 -1 480 -2 510 -2 510 -5 550 -5 560 -5 560 -8 630 -9 650 -9 650 -9 650 -2 710 -2 70 -2 730 -7 740 -2 730 -3 620 -3 301	$\begin{array}{rrrr} e \ factors. \\ F_{0} & F_{0} \\ 13:2 + 13:6 \\ 10:2 + 9:6 \\ 10:2 + 9:6 \\ 10:2 + 9:6 \\ 10:2 + 9:6 \\ 10:2 + 9:6 \\ 10:2 + 9:6 \\ 10:2 + 9:6 \\ 10:2 + 9:6 \\ 10:2 + 9:6 \\ 10:2 + 9:6 \\ 10:2 + 9:6 \\ 10:2 + 9:6 \\ 10:2 + 10:2 \\ 1$	bkl 012 013 014 015 016 017 020 021 022 023 024 025 029 0,2,10 031 0325 033 034 035 036 037 038 037,038 0344 0445 0446	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} F_{0} \\ + 6 \cdot 1 \\ + 0 \cdot 1 \\ + 1 \cdot 2 \\ + 1 \cdot 3 \cdot 4 \\ + 1 \cdot 2 \cdot 5 \cdot 5 \\ + 3 \cdot 4 \\ + 2 \cdot 0 \\ + 2 \cdot 1 \\ + 2 \cdot 5 \cdot 5 \\ + 3 \cdot 4 \\ + 2 \cdot 0 \\ + 2 \cdot 1 \\ + 2 \cdot 1 \\ + 2 \cdot 1 \\ + 2 \cdot 4 \\ + 2 \cdot 0 \\ + 2 \cdot 1 \\ + 2 \cdot 1 \\ - 5 \cdot 6 \\ - 1 \cdot 3 \\ - 4 \\ - 1 \cdot 3 \\ - 4 \cdot 1 \cdot 7 \\ + 0 \cdot 9 \\ - 1 \cdot 1 \cdot 7 \\ + 0 \cdot 9 \\ - 1 \cdot 1 \cdot 7 \\ + 0 \cdot 9 \\ - 0 \cdot 2 \\ - 5 \cdot 3 \\ - 5 \cdot 1 \\ - 1 \cdot 1 \cdot 7 \\ - 1 \cdot 1 \cdot 1 \\ - 1 \cdot 1 \cdot 7 \\ - 1 \cdot 1 \cdot 1 \\ - 1 \cdot 1 \\ - 1 \cdot 1 \\ - 1 \cdot 1 \cdot 1$

⁷ Cruickshank and Robertson, Acta Cryst., 1953, 6, 698.

[1959] Di(tertiary Arsine) Iron Carbonyls and Oxidation Products. 1397

Application of statistical tests shows that the differences between the chemically equivalent bonds $S-C_1$, $S-C_2$ and the equivalent angles C_1-S-O , C_2-S-O and $C_1'-C_2-S$, $C_2'-C_1-S$ are not significant; nor do the dimensions of the dithian ring differ significantly from these obtained for dithian itself.³ The dimensions of the sulphoxide group are similar to those found in other compounds.⁸

The shortest van der Waals contacts are of 3.34, 3.35, and 3.39 Å between the oxygen atom of one molecule and carbon atoms of adjacent molecules. All the intermolecular distances of less than 3.75 Å are shown in Fig. 1.

The author thanks Dr. G. M. Bennett for a sample of the pure compound, and Dr. J. D. Dunitz for his interest and suggestions throughout the work.

Organic Chemistry Laboratory, Swiss Federal Institute of Technology, Zurich, Switzerland.

[Received, October 28th, 1958.]

⁸ Abrahams, Quart. Rev., 1956, 10, 407.