271. The Structure of the α-Modification of 1:4-Dithian 1:4-Dioxide.

By H. M. M. Shearer.

The crystal structure of this dioxide has been determined by X-ray methods. The monoclinic unit cell, $a=6.34 \pm 0.01, b=6.46 \pm 0.01$, $c=8.22 \pm 0.01 \AA, \beta=103^{\circ} 57^{\prime} \pm 15^{\prime}$, space-group $P 2_{1} / n$, contains two centrosymmetrical molecules. Analysis of the three principal zones leads to a model in which the dithian ring has the chair form with the oxygen atoms in the trans-diaxial positions. No unusual bond distances or intermolecular contacts are found.

Bell and Bennett ${ }^{1}$ reported that oxidation of $1: 4$-dithian gave two dioxides or disulphoxides. That produced in greater yield, designated α, was described as being more soluble in water and less soluble in ethanol than the other (β). The authors suggested that it was the trans-compound. The present work confirms this and shows that the molecules, in crystals of the α-form, have the trans-diaxial configuration with the ring in the chair conformation, as in the parent compound $1: 4$-dithian ${ }^{2,3}$ itself.

Crystal Data.-Monoclinic; $a=6.34 \pm 0.01, b=6.46 \pm 0.01, c=8.22 \pm 0.01 \AA$, $\beta=103^{\circ} 57^{\prime} \pm 15^{\prime} . \quad U=326.7 \AA^{3}, D_{\mathrm{m}}=1.535 \mathrm{~g} . \mathrm{cm} .^{-3}, Z=2, D_{\mathrm{o}}=1.547 \mathrm{~g} . \mathrm{cm} .^{-3}$, $\mu(\lambda=0.7107 \AA)=7.37 \mathrm{~cm} .^{-1}$. Space-group $C_{2 h^{5}}-P 2_{1} / n$ from systematic absences. Molecular symmetry, centre.

Experimental

Crystals were obtained as thin plates, with the $\{10 \mathrm{I}\}$ and $\{101\}$ faces well developed, by evaporation from a solution in ethanol. The unit-cell dimensions were measured from precession photographs and the axial ratios ($0.981: 1: 1.272$) were found to be in good agreement with those given by Bell and Bennett ${ }^{1}$ ($\left.0 \cdot 979: 1: 1 \cdot 267 ; ~ \beta=104^{\circ} 3^{\prime}\right)$.

For intensity measurements a crystal of cross-section $0.20 \times 0.23 \mathrm{~mm}$. and length 0.80 mm . was used, mounted about the b axis. The ($h 0 l$) reflections were recorded on an integrating Weissenberg apparatus, and the ($h k 0$) and ($0 k l$) reflections on the precession camera; Zrfiltered Mo radiation was used throughout. The intensities were estimated visually, an exposure scale being used, and corrected for the usual angle factors. No corrections were applied for absorption.

Structure Determination.-The space-group is $P 2_{1} / n$ with two molecules in the unit cell, so that the molecule possesses a centre of symmetry. It must therefore have the chair configuration with the oxygen atoms in diaxial or diequatorial positions.

The (010) projection was examined first since this was the simplest. The sharpened Patterson function was evaluated, by using as coefficients $F^{2} / \sum i^{2}$. The Patterson map showed two large peaks of almost equal height. One was sharper and rounder than the other with an
${ }^{1}$ Bell and Bennett, J., 1927, 1798.
${ }^{2}$ Duthie, Acta Cryst., 1953, 6, 804.
${ }^{3}$ Marsh, ibid., 1955, 8, 91.
environment similar to that at the origin and so was taken as the $S-S$ vector across the centre of symmetry. A single superposition, with the origin of the Patterson function transferred to this point, gave approximate positions for the carbon and oxygen atoms in this projection and showed the oxygen atoms to be diaxial.

Refinement was carried out by means of one F_{o} and two $F_{0}-F_{\mathrm{c}}$ syntheses, and the contributions of the hydrogen atoms (the positions of which were estimated approximately from a model) were included in the final stage. The arrangement of the atoms in this projection is shown in Fig. 1.

Fig. 1. Arrangement of the molecules in the (010) projection with the shortest intermolecular distances (in \AA).

For the (001) projection, the determination of the approximate structure and its refinement were carried out in a similar manner. In the (100) projection, considerable overlapping of the atoms occurs and only a final structure factor calculation was made as a check of the correctness of the structure.

The structure factors were calculated by using the form factor due to Viervoll and Ogrim ${ }^{4}$ for the sulphur atoms, those of Hoerni and Ibers ${ }^{5}$ for the carbon and oxygen atoms, and that of McWeeny ${ }^{6}$ for hydrogen. On the basis of the difference maps, individual temperature factors were assigned to the different atomic species and the final values of the exponent B (in \AA^{2}) in the expression $\exp \left(-B \sin ^{2} \theta / \lambda^{2}\right)$ are shown below.

		S	O	C			S	O	C			S	O
$(h 0 l)$	\ldots	$\mathbf{3 \cdot 1}$	$\mathbf{3 \cdot 4}$	$\mathbf{3 \cdot 3}$	$(h k 0)$	\ldots	$\mathbf{3} \cdot \mathbf{1}$	$\mathbf{4} \cdot \mathbf{0}$	$\mathbf{3 . 7}$	$(0 k l)$	\ldots	$\mathbf{3 \cdot 1}$	$\mathbf{3 . 8}$
$\mathbf{3}$	$\mathbf{3 . 5}$												

The value of $B=3.5 \AA^{2}$ for the hydrogen atoms was adopted, somewhat arbitrarily, for all the structure factors. The reliability indices were $9 \cdot 8 \%$ for the ($h 0 l$) reflections, 9.0% for the ($h k 0$), and $9 \cdot 1 \%$ for the ($0 k l$). The structure factors are listed in Table 3.

[^0]The final atomic co-ordinates are given in Table 1 and the bond lengths and angles in Table 2 with their averaged values in Fig. 2. Estimates of the standard deviations in bond lengths and angles were calculated ${ }^{7}$ and are included in Table 3.

Fig. 2. Averaged molecular dimensions (in \AA).
Table 1. Atomic co-ordinates.

	x / a	y / b	z / c		x / a	y / b	z / c
S	$0 \cdot 207$	$0 \cdot 181$	0.016	H_{1}	-0.141	$0 \cdot 224$	-0.050
O	$0 \cdot 350$	0.095	$0 \cdot 170$	H_{2}	-0.070	$0 \cdot 340$	$0 \cdot 163$
C_{1}	-0.058	0.219	0.061	H_{3}	$0 \cdot 281$	-0.065	-0.190
C_{2}	$0 \cdot 133$	-0.025	$-0 \cdot 134$	H_{4}	0.027	0.031	-0.237

Table 2. Bond lengths (\AA) and angles.

Table 3. Structure factors.

$h k$	$F 0$	F_{0}	$h k$	F o	F_{c}	$h k l$	F_{0}	F_{0}	$h k l$	F_{0}	F_{c}	$h k l$	F_{0}	F_{c}	$h k l$	F_{0}	F_{0}
200	$36 \cdot 0$	$-32 \cdot 3$	307	14.0	$-17 \cdot 3$	606	$<2 \cdot 7$	$+0.8$	320	13.2	$+13 \cdot 6$	012	$34 \cdot 4$	$-33 \cdot 7$	047	$4 \cdot 9$	$+6.1$
400	1.8	-2.2	305	$17 \cdot 9$	-18.8	608	$3 \cdot 6$	-2.3	330	10.2	+9.6	013	$13 \cdot 0$	$-10 \cdot 8$	048	$<2 \cdot 1$	$+0.1$
600	$4 \cdot 0$	+3.1	303	$38 \cdot 8$	$-42 \cdot 6$				340	$15 \cdot 8$	-15.9	014	$9 \cdot 1$	-9.6	049	$2 \cdot 9$	$+4.1$
800	$3 \cdot 3$	-3.2	301	$23 \cdot 3$	$-23 \cdot 3$	705	$9 \cdot 9$	$-10 \cdot 4$	350	15.5	$-14 \cdot 4$	015	$9 \cdot 4$	$+11 \cdot 1$	0,4,10	$1 \cdot 4$	-1.2
020	$20 \cdot 2$	-18.6	301	12.9	-11.0 -8.5	703	8.9 10.0	$-8 \cdot 7$ -10.0	360	$7 \cdot 4$	$+7 \cdot 6$	016	10.0	113.3	0,4,10		1
020	20.2 1.9	-18.6 -1.4	303 305	11.4 2.3	-8.5 +1.8	701	$10 \cdot 0$ $11 \cdot 5$	$-10 \cdot 0$ $-10 \cdot 4$	410	$19 \cdot 7$	$22 \cdot 0$	017	8.0 8.0	+9.1 -10.1	051	$20 \cdot 3$	$+18 \cdot 8$
060	$9 \cdot 7$	+9.4	305 307	$2 \cdot 3$ $3 \cdot 9$	+1.8 -3.4	701	11.5 $5 \cdot 3$	$-10 \cdot 4$ $-5 \cdot 8$	410	$19 \cdot 7$ $12 \cdot 0$	+22.0 $-13 \cdot 3$	018	$8 \cdot 0$	-10.1	052	4.4	-3.4
080	$7 \cdot 1$	-6.3	307	$3 \cdot 9$	-3.4	705	$5 \cdot 3$ $4 \cdot 3$	-5.8	430	$11 \cdot 6$	$-12 \cdot 2$	021			053 054	16.9 $3 \cdot 0$	$+18 \cdot 2$ +2.7
002	$42 \cdot 1$	$+38 \cdot 8$	408	$3 \cdot 1$ 9.9	-3.0			-3.8	440	$2 \cdot 1$ 4.7	-1.2 -5.4	021	$26 \cdot 0$ $43 \cdot 7$	$-25 \cdot 9$ $-40 \cdot 5$	054 055	$3 \cdot 0$ $5 \cdot 7$	+2.7 +5.5
004	$13 \cdot 7$	+38.8 +13.7	406 404	9.9 1.7	-12.2 +1.3	808	$2 \cdot 8$ 2.6	-3.4	450 460	$4 \cdot 7$ $4 \cdot 4$	$-5 \cdot 4$ $+4 \cdot 4$	023	$13 \cdot 0$	-11.3	056	$2 \cdot 9$ 4.3	+3.9
006	$21 \cdot 4$	+23.0	402	$<13 \cdot 7$		806	$2 \cdot 6$ $7 \cdot 5$	-3.3	470	$4 \cdot 4$ $6 \cdot 7$	+4.4 +6.2	024	26.1	-24.5	057	4.3 <2.0	$+4.4$
008	$5 \cdot 4$	$+5 \cdot 8$	402 402	$13 \cdot 3$ $18 \cdot 3$	+12.9 +16.8	8802	$7 \cdot 6$ $9 \cdot 7$	-6.1 -9.1	480	6.7 1.7	+6.2 -2.3	025 026	$2 \cdot 1$ $2 \cdot 7$	-2.0 -3.6	058 059	$<2 \cdot 0$ $2 \cdot 3$	+2.0 +3.2
109	$5 \cdot 1$	$+7.3$	404	26.9	$+23 \cdot 3$	802	<2.7	-1.2				027	$9 \cdot 7$	$-11 \cdot 3$	0	,	
107	$14 \cdot 9$	$+16.9$	406	$7 \cdot 3$	+7.6	804	2.9	$-2 \cdot 2$	510 520	4.6	+5.1 +2.3	028	$<2 \cdot 2$	-1.3	061	$3 \cdot 2$	-2.1
105	$5 \cdot 6$	$+5 \cdot 6$	408 40.10	$4 \cdot 1$ $3 \cdot 6$	+4.4 +3.3				520 530	$2 \cdot 1$ 13.5	+2.3 -15.2	029	$4 \cdot 0$	-5.1	062	$12 \cdot 3$	+12.4
103	$18 \cdot 2$	$+20 \cdot 9$	4,0,10	$3 \cdot 6$	$+3 \cdot 3$	10,0,4	$4 \cdot 6$	$+4 \cdot 0$	530 540	13.5 <1.8	+15.2 +2.0	0,2,10	$2 \cdot 0$	-2.1	063	$6 \cdot 4$	$-5 \cdot 8$
101	$42 \cdot 3$	+45.2				110	$8 \cdot 4$	$+9 \cdot 5$	550	1.8 7.3	+2.0 +6.9				064	$7 \cdot 9$ $4 \cdot 3$	+8.6 -3.4
101	$27 \cdot 0$	+25.4	5,0,15	$4 \cdot 3$ $7 \cdot 4$	+5.3 +8.2	110	8.4 $40 \cdot 6$	$+9 \cdot 5$ $-39 \cdot 5$	55	$7 \cdot 3$	$+6.9$	031	$30 \cdot 7$	$-29 \cdot 5$	065	$4 \cdot 3$	$-3 \cdot 4$
107	$10 \cdot 8$	-12.1	505	$13 \cdot 1$	$+14 \cdot 3$	140	$20 \cdot 0$	$+19 \cdot 3$	620	1.8	+2.9	033	30.9	-29.8	067	3	
109	$2 \cdot 9$	$-3 \cdot 4$	503	$18 \cdot 0$	+18.6	150	14-0	$+13 \cdot 8$	630	1.8	-1.2	034	$15 \cdot 4$	$+16.2$	068	3	
1,0,11	3-9	-4.4	501	11.7	+11.0 +18.8	160 170	$3 \cdot 1$	-2.6	640 650	<1.8	-1.7 +3.5	035 036	15.9 6.1	+18.1 $+5 \cdot 3$			
208	$8 \cdot 5$	-9.4	501 503	21.6 14.8	$+18 \cdot 8$ $+13 \cdot 6$	170	$1 \cdot 7$	-0.9	650	$3 \cdot 1$	$+3 \cdot 5$	036 037	$6 \cdot 1$ $4 \cdot 6$	+6.3 -6.0	071 072	$5 \cdot 0$ $2 \cdot 3$	-3.4 -1.8
$20{ }^{8}$	$10 \cdot 2$	$-12 \cdot 4$	505	$9 \cdot 7$	+9.3	210	$4 \cdot 5$	$+6.8$	710	$4 \cdot 1$	$-3 \cdot 7$	038	$<2 \cdot 2$	-0.5	073	$2 \cdot 3$	-1.3
204	$5 \cdot 2$	-3.9	507	$6 \cdot 6$	$+5 \cdot 5$	220	$8 \cdot 5$	+9.0	720	$1 \cdot 8$	$-2 \cdot 5$	039	$2 \cdot 8$	-2.9	074	$2 \cdot 9$	-4.1
202	58.4	$-56 \cdot 8$				230	$14 \cdot 5$	$+15.7$	730	$10 \cdot 2$	$+8.9$	0,3,10	$1 \cdot 7$	+1.5	075	$<2 \cdot 0$	-1.0
202	4.9	$+6.0$	6,0,10	$4 \cdot 3$	$+4.9$	240	$7 \cdot 8$	+7.7	740	<1.7	+1.1				076	$1 \cdot 7$	-1.7
204	$30 \cdot 4$	-28.2	608	$7 \cdot 8$	+7.7	250	$9 \cdot 4$	$+10 \cdot 2$	750	$3 \cdot 2$	-3.4	041	$5 \cdot 9$	-5.8	077	$1 \cdot 2$	$+0.8$
206	$21 \cdot 4$	-21.2	606	$4 \cdot 7$	+6.1	260	$10 \cdot 7$	$-10 \cdot 0$				042	$2 \cdot 6$	+2.6			
208	$6 \cdot 2$	-7.4	604	$2 \cdot 6$	$-2 \cdot 3$	270	$4 \cdot 7$	$-5 \cdot 2$	810	$6 \cdot 6$	$+5 \cdot 4$	043	$9 \cdot 1$	$+8 \cdot 1$	081	<1.9	$+0.9$
2,0,10	$4 \cdot 9$	-5.8	602	$4 \cdot 8$	+4.1	280	$5 \cdot 1$	$+5 \cdot 4$	820	$5 \cdot 8$	$+3 \cdot 7$	044	$3 \cdot 6$	$-2 \cdot 7$	082	6.7	-6.4
			602	$7 \cdot 1$	-6.8							045	$15 \cdot 7$	$+15 \cdot 4$	083	<1.8	-0.2
309	$12 \cdot 8$	$-14 \cdot 8$	604	$<2 \cdot 3$	-0.6	310	$2 \cdot 9$	$-3 \cdot 3$	011	$49 \cdot 3$	$+50 \cdot 4$	046	$4 \cdot 6$	$-5 \cdot 4$	084	$4 \cdot 6$	$-5 \cdot 3$

[^1]Application of statistical tests shows that the differences between the chemically equivalent bonds $\mathrm{S}^{-} \mathrm{C}_{1}, \mathrm{~S}-\mathrm{C}_{2}$ and the equivalent angles $\mathrm{C}_{1}-\mathrm{S}-\mathrm{O}, \mathrm{C}_{2}-\mathrm{S}-\mathrm{O}$ and $\mathrm{C}_{1}{ }^{\prime}-\mathrm{C}_{2}-\mathrm{S}, \mathrm{C}_{2}{ }^{\prime}-\mathrm{C}_{1}-\mathrm{S}$ are not significant; nor do the dimensions of the dithian ring differ significantly from these obtained for dithian itself. ${ }^{3}$ The dimensions of the sulphoxide group are similar to those found in other compounds. ${ }^{8}$

The shortest van der Waals contacts are of $3.34,3.35$, and $3.39 \AA$ between the oxygen atom of one molecule and carbon atoms of adjacent molecules. All the intermolecular distances of less than $3.75 \AA$ are shown in Fig. 1.

The author thanks Dr. G. M. Bennett for a sample of the pure compound, and Dr. J. D. Dunitz for his interest and suggestions throughout the work.

Organic Chemistry Laborayory,
Swiss Federal Institute of Technology, Zurich, Switzerland.
[Received, October 28th, 1958.]
${ }^{8}$ Abrahams, Quart. Rev., 1956, 10, 407.

[^0]: 4 Viervoll and Ogrim, Acta Cryst., 1949, 2, 277.
 ${ }^{5}$ Hoerni and Ibers, ibid., 1954, 7, 744.
 ${ }^{6}$ McWeeny, ibid., 1951, 4, 513.

[^1]: ${ }^{7}$ Cruickshank and Robertson, Acta Cryst., 1953, 6, 698.

